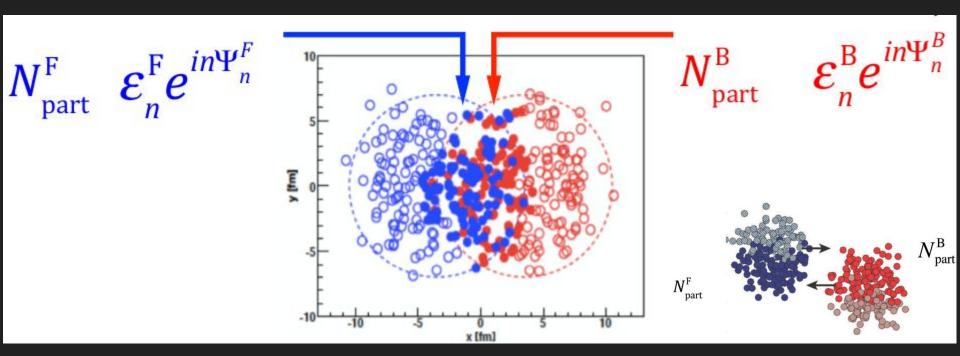
# Recent experimental results on Longitudinal multiplicity and flow fluctuations in heavy-ion collisions

Soumya Mohapatra (Columbia University)

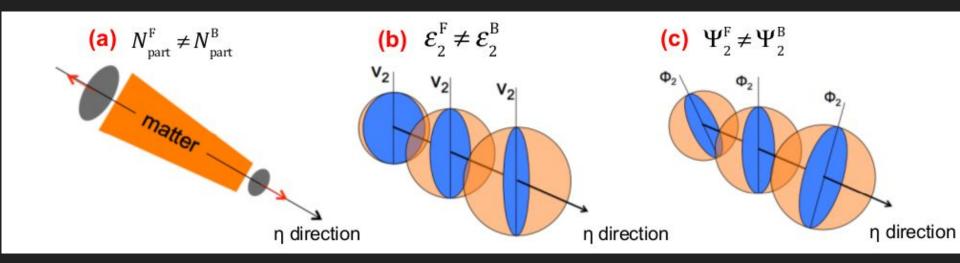
RHIC & AGS User's Meeting-2016

### Origin of longitudinal fluctuations



- Can see it in simple MC Galuber model picture
- Forward & backward going participant distributions are not symmetric

### Consequence of longitudinal fluctuations

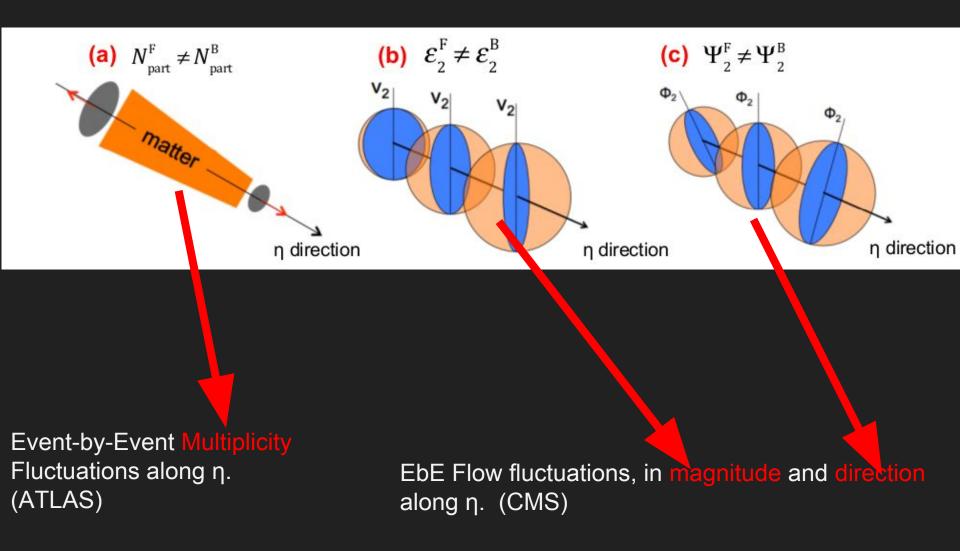


- Forward & backward going participant distributions are not symmetric
- Three effects of asymmetry:

$$\circ$$
  $\epsilon^{F}_{n} != \epsilon^{B}_{n}$ 

$$\circ$$
  $\Psi^F_n := \Psi^B_n$ 

### Observing longitudinal fluctuations



### EbE Forward-backward (FB) Multiplicity fluctuations



Event-by-Event single-particle multiplicity distributions (normalized):

$$R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta) \rangle}$$

ATLAS-CONF-2015-020

- Observe clear multiplicity fluctuations along η.
- However single-particle observable cannot be easily used to study correlated fluctuations.

### Multiplicity correlation functions

Measure FB fluctuations using two-particle correlations

$$C(\eta_1, \eta_2) = \frac{\langle N(\eta_1)N(\eta_2)\rangle}{\langle N(\eta_1)\rangle \langle N(\eta_2)\rangle} \equiv \langle R_{\rm S}(\eta_1)R_{\rm S}(\eta_2)\rangle \ , \quad R_{\rm S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}$$

ATLAS-CONF-2015-020 ATLAS-CONF-2015-051

### Multiplicity correlation functions

Measure FB fluctuations using two-particle correlations

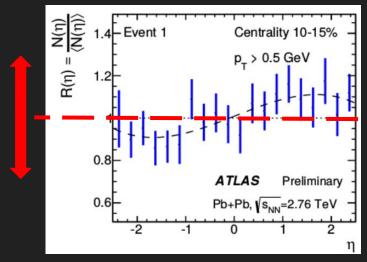
$$C(\eta_1,\eta_2) = \frac{\langle N(\eta_1)N(\eta_2)\rangle}{\langle N(\eta_1)\rangle\langle N(\eta_2)\rangle} \equiv \langle R_{\rm S}(\eta_1)R_{\rm S}(\eta_2)\rangle \ , \quad R_{\rm S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}$$

ATLAS-CONF-2015-020 ATLAS-CONF-2015-051

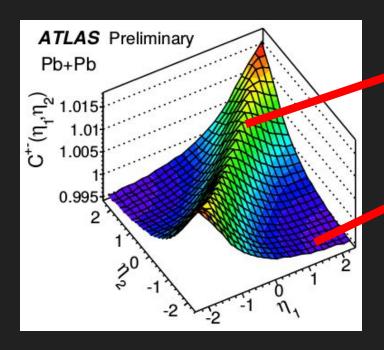
Renormalize to remove overall multiplicity fluctuations (single particle modes)

$$C_{N}(\eta_{1}, \eta_{2}) = \frac{C(\eta_{1}, \eta_{2})}{C_{p}(\eta_{1})C_{p}(\eta_{2})},$$

$$C_{p}(\eta_{1}) = \frac{\int_{-Y}^{Y} C(\eta_{1}, \eta_{2}) d\eta_{2}}{2Y}, \quad C_{p}(\eta_{2}) = \frac{\int_{-Y}^{Y} C(\eta_{1}, \eta_{2}) d\eta_{1}}{2Y}$$



### Short-range correlations



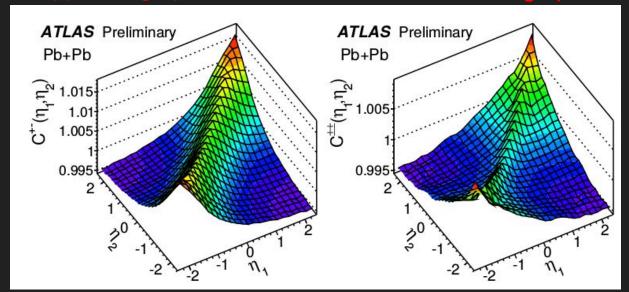
Short-range correlations (Jets, decays) produce ridge-like structure along  $\eta_1 = \eta_2$ .

This must be removed first, before extracting features of the genuine long-range correlation that sits underneath

### Short-range correlations

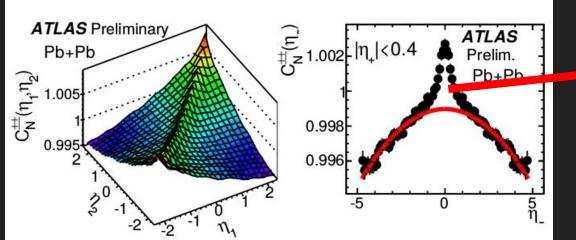
#### Opp-Charge pairs

#### Same-Charge pairs



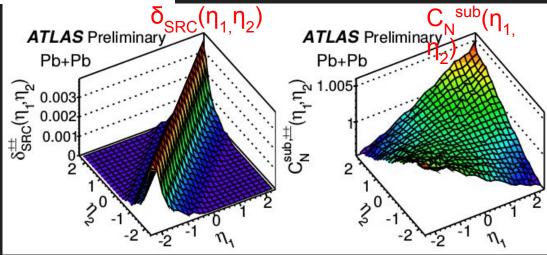
- Short-range correlations depend strongly on relative sign of particle pairs.
- Much larger for opposite-sign (left) than like sign pairs (right).
- Long range correlation quite identical!

### Short-range correlations: Removal

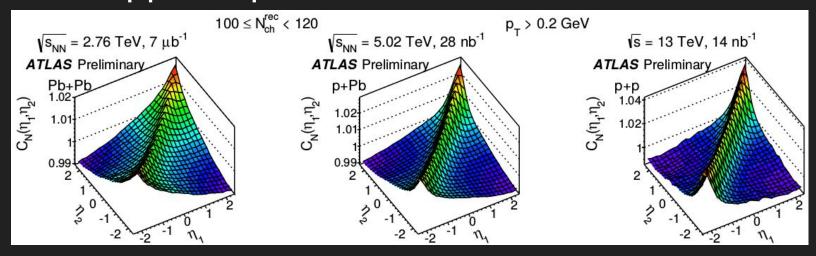




- SRC is estimated by fitting 1D projection along  $\eta_1$ - $\eta_2$  with quadratic function over the range  $|\eta_1-\eta_2|>1.5$
- Excess over fit is assumed to be SRC and is removed
- Remaining correlation is the genuine long-range correlation: C<sup>sub</sup>(η<sub>4</sub> η<sub>2</sub>)

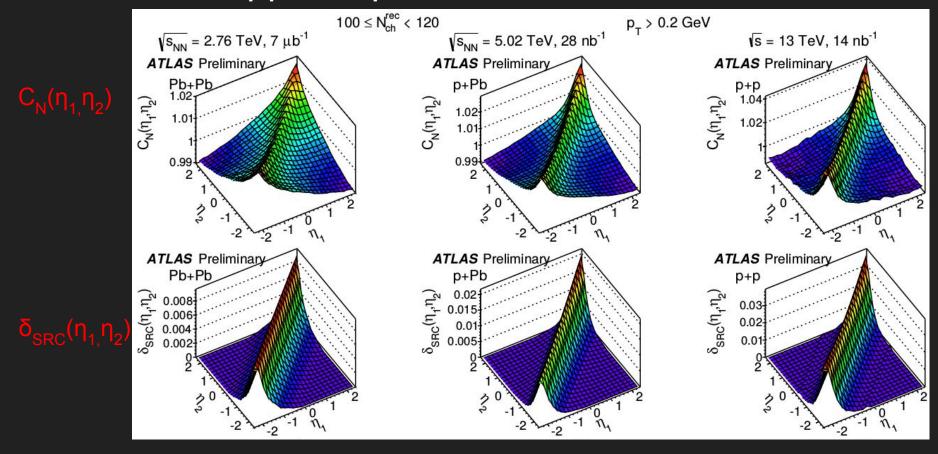


# Extension to pp and p+Pb

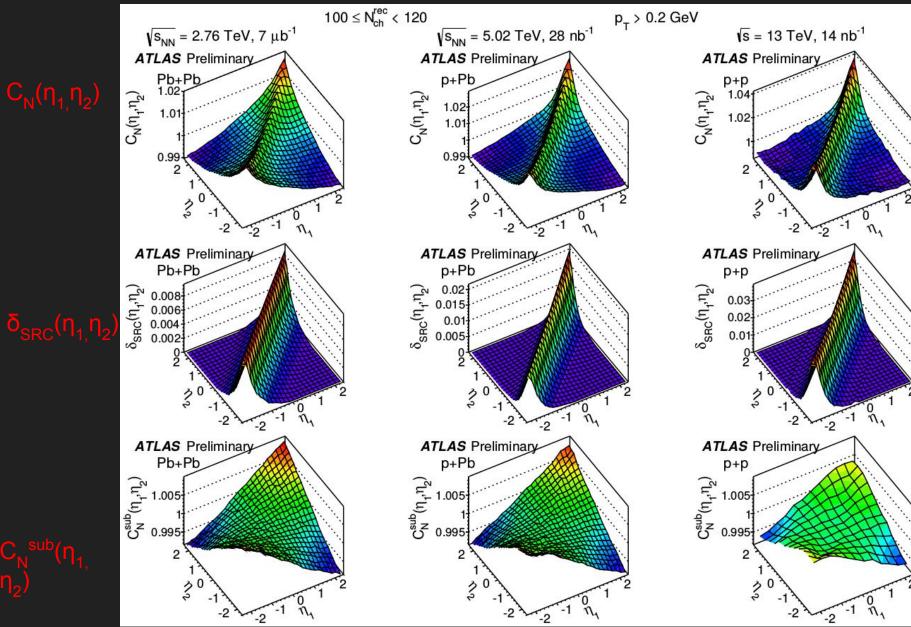


 $C_N(\eta_1,\eta_2)$ 

## Extension to pp and p+Pb



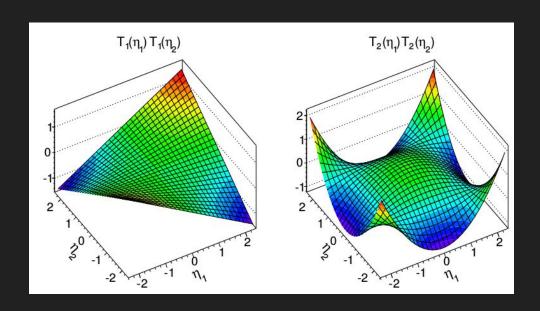
### Extension to pp and p+Pb



### Quantifying the LRC

The LRC is quantified by expanding the correlation function in a 2D Legendre-function basis (arXiv:1210.1965: A. Bzdak, D.Teaney):

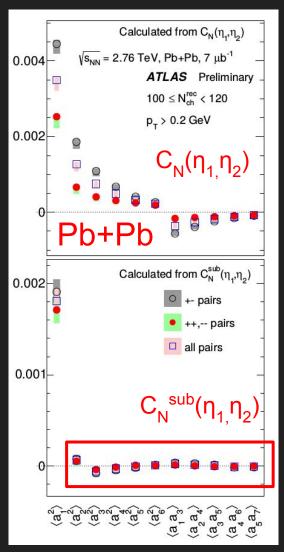
$$C_{\rm N}(\eta_1,\eta_2) = 1 + \sum_{n,m=1}^{\infty} a_{n,m} \frac{T_n(\eta_1) T_m(\eta_2) + T_n(\eta_2) T_m(\eta_1)}{2}, \quad T_n(\eta) \equiv \sqrt{\frac{2n+1}{3}} Y \, P_n\left(\frac{\eta}{Y}\right)$$



Example basis functions  $T_1T_1$  and  $T_2T_2$ 

Coefficients of the expansion a<sub>m.n</sub> quantify the correlation strength

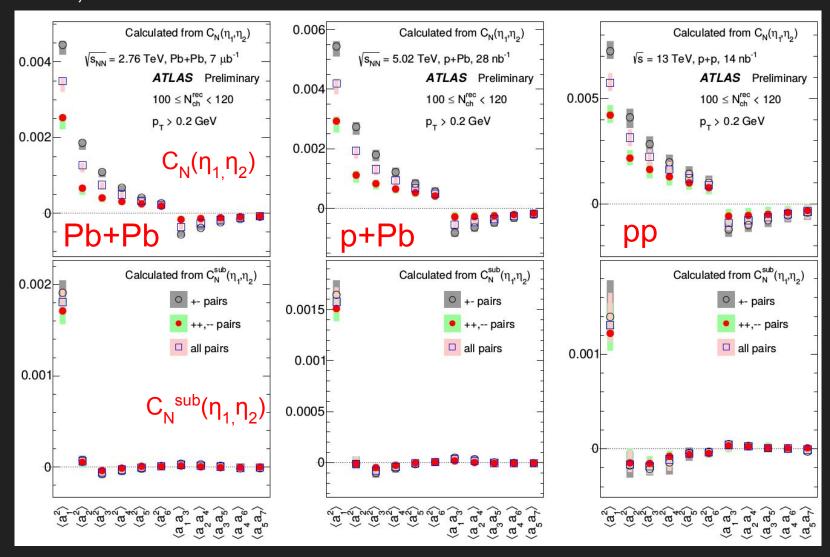
# Correlation coefficients a<sub>m,n</sub>



- Before SRC removal, several non-zero a<sub>m n</sub> are observed.
- Significant difference between same-charge and opposite charge pairs

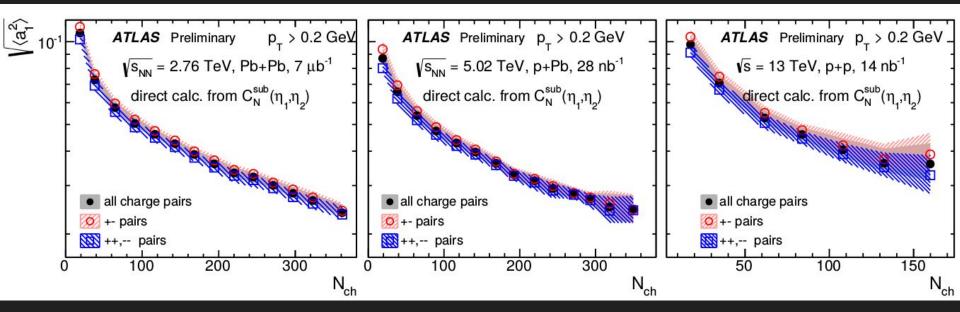
- After SRC removal, only  $a_{1,1}$  is significant. FB fluctuation dominated by linear single-particle component
- Consistency between same-charge and opposite charge pairs

# a<sub>m,n</sub>: Dependence on colliding system



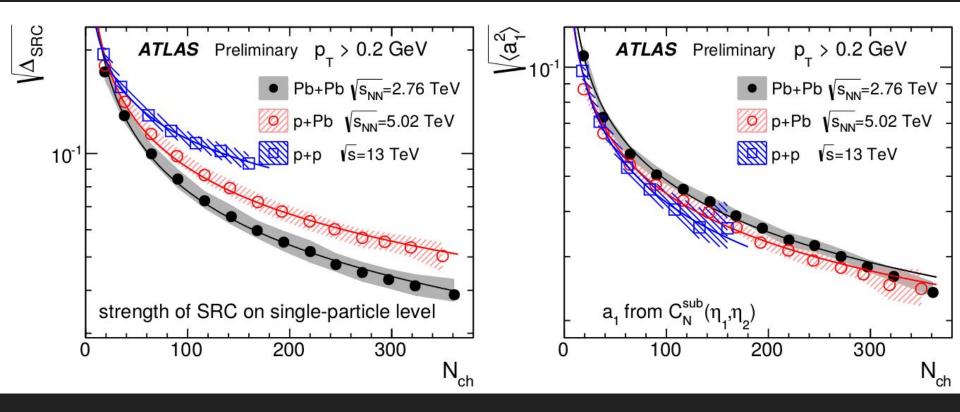
Same observation for pp and p+Pb

## Multiplicity dependence of a₁:



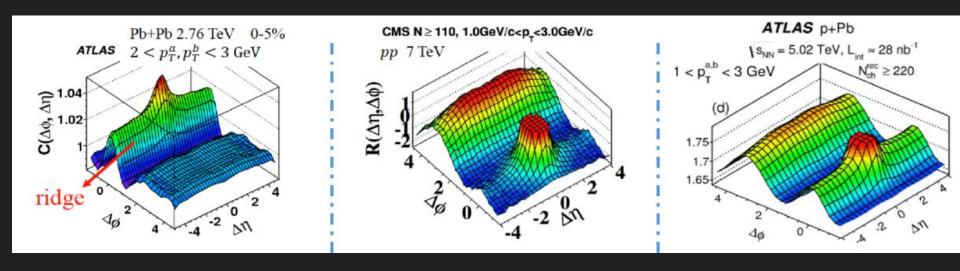
- Decreases with increasing N<sub>ch</sub>.
- Identical for different charge combinations across all multiplicities.
- Quite similar between pp, p+Pb and Pb+Pb (Note: different x-axis range)

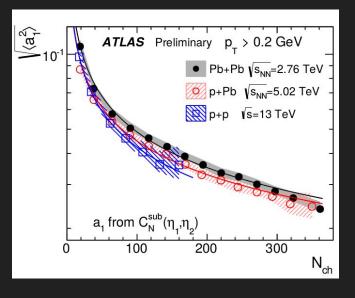
### SRC vs LRC



- SRC is quite different for the three systems
  - Largest for pp smallest for A+A (at same multiplicity)
- Quite comparable LRC for pp, pA and AA!

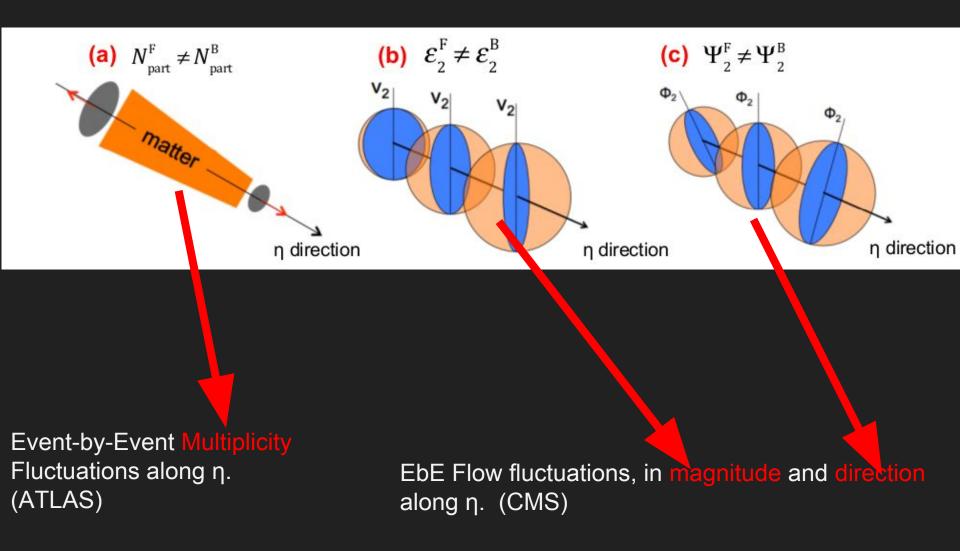
# Similarity of LRC for pp, p+Pb and Pb+Pb





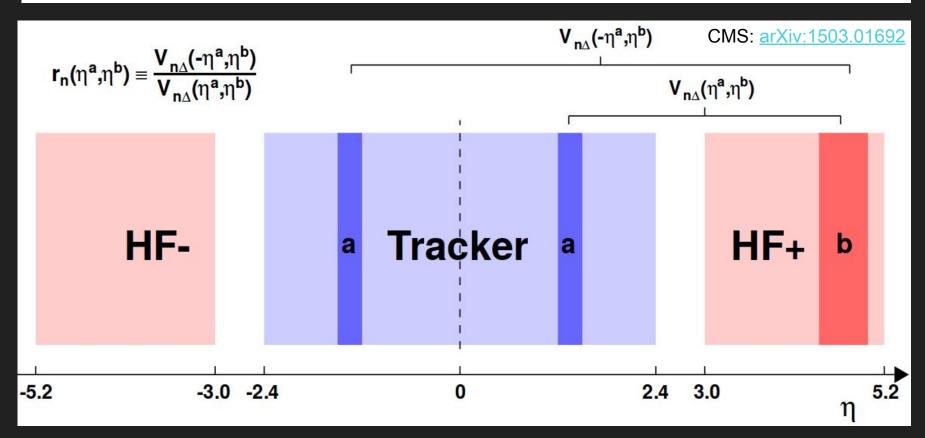
pp, pA and AA are similar on multiple fronts!

### Longitudinal flow fluctuations



### Quantifying the Event-plane rotation

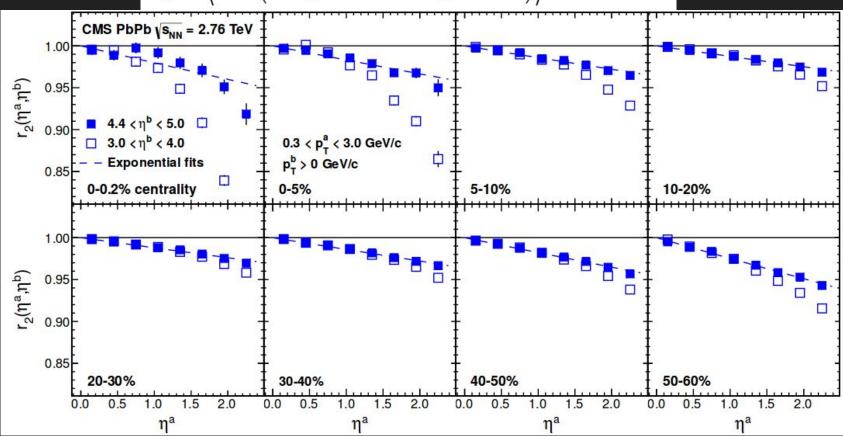
$$v_{n\Delta}(\eta^a, \eta^b) = \left\langle v_n(\eta^a) v_n(\eta^b) \right\rangle \longrightarrow v_{n\Delta}(\eta^a, \eta^b) = \left\langle v_n(\eta^a) v_n(\eta^b) \cos\left(n\Psi_n(\eta^a) - n\Psi_n(\eta^a)\right) \right\rangle$$



$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle} \sim \left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(-\eta^{a}))]\right\rangle$$

# Event-plane rotation: $\Psi_2$

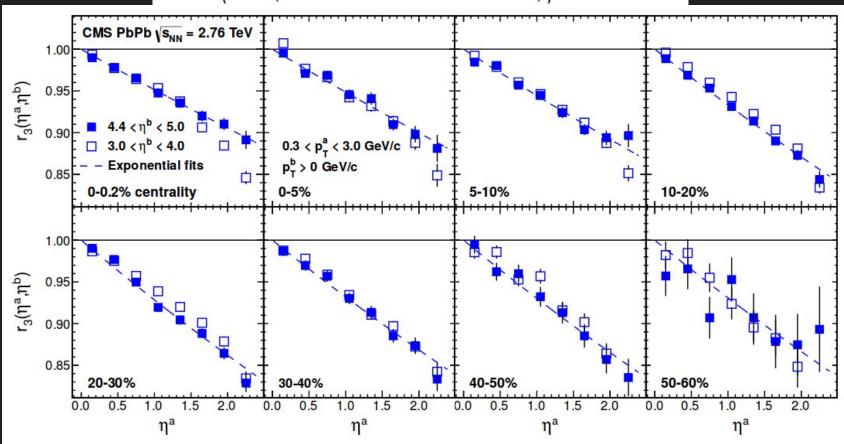
$$r_n \approx \left\langle \cos\left(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)\right) \right\rangle \approx e^{-2F_n^{\eta}\eta^a}$$



- Clear de-correlation (rotation) observed
- Observable has some dependence on choice of reference bin
  - $\circ$  Dependence is smaller in mid-central events and for  $\eta^a < 1$
- Effect decreases from central->mid-central then increases again

# Event-plane rotation:Ψ<sub>3</sub>

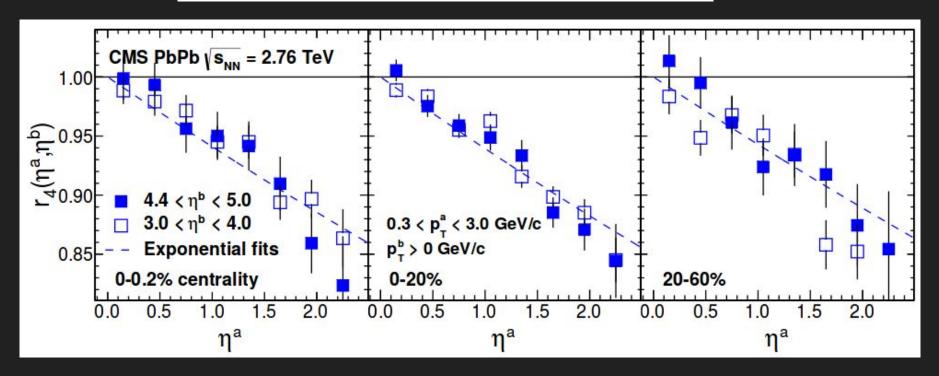
$$r_n \approx \langle \cos(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)) \rangle \approx e^{-2F_n^{\eta}\eta^a}$$



- Significantly larger rotation for n=3
- Nearly independent of choice of reference bin
- Not much centrality dependence

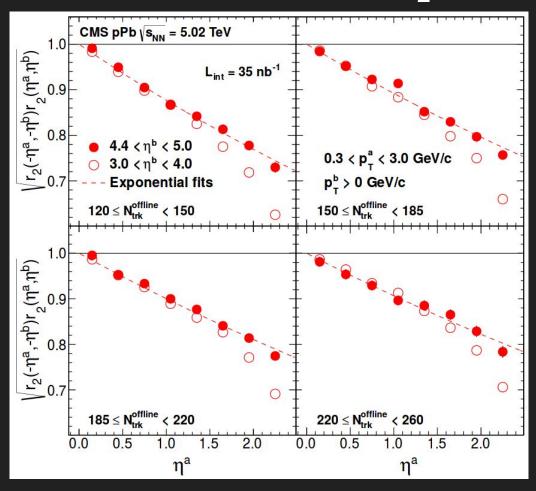
# Event-plane rotation:Ψ

$$r_n \approx \left\langle \cos\left(n\Psi_n(\eta^a) - n\Psi_n(-\eta^a)\right) \right\rangle \approx e^{-2F_n^{\eta}\eta^a}$$



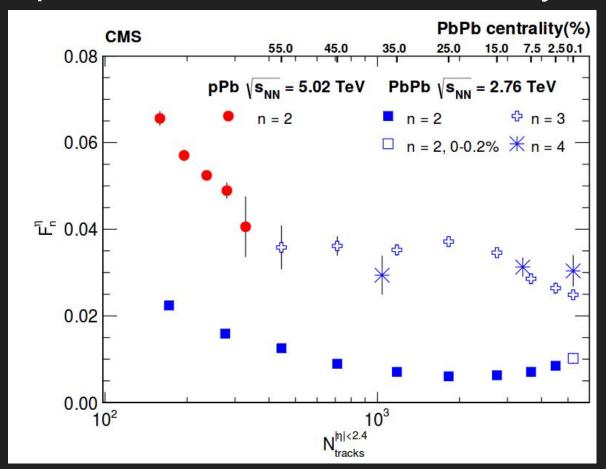
- Significantly larger rotation for n=4 (compared to n=2)
- Nearly independent of choice of reference bin
- Not much centrality dependence

# Factorization breakdown in p+Pb:Ψ<sub>2</sub>



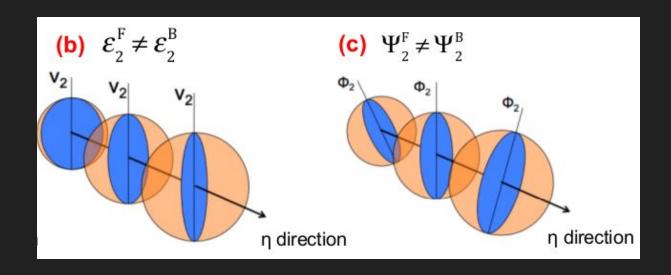
- Significantly larger rotation for p+Pb
- Nearly independent of choice of reference bin

### Event-plane de-correlations: summary



- For n=2 first decreases then increases with centrality and harmonic order 'n'
  - $\circ$  Interesting as p<sub>T</sub> dependent factorization breakdown is larger for v<sub>2</sub> than for v<sub>3</sub>
- No clear centrality dependence for n=4
- Much larger in p+Pb compared to Pb+Pb at same multiplicity

#### Drawback of the EP decorrelation measurement



$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle} \sim \left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(-\eta^{a}))]\right\rangle$$

- Cannot differentiate between magnitude fluctuation and EP rotation
- Interprets magnitude fluctuation effects as rotation effects

### Summary

 Recently there has been much progress in studying longitudinal multiplicity and flow fluctuations (Both theory and experiment)

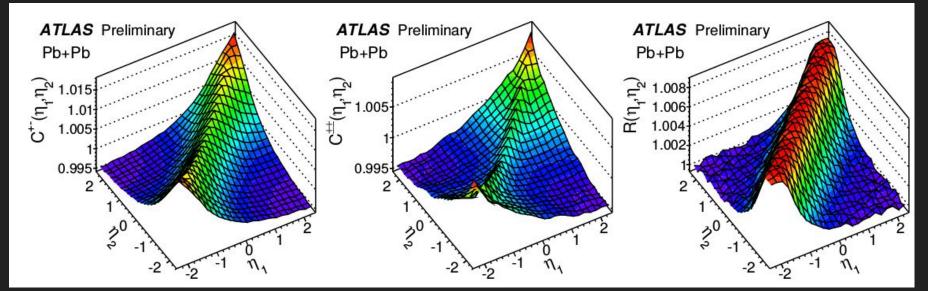
- Measurements include
  - FB Multiplicity correlations from ATLAS
  - EP rotation measurements from CMS
- FB Multiplicity correlations:
  - Linear multiplicity variation is dominant source.
  - Very similar correlations for pp, pA and AA collisions
  - Systems not too dissimilar after all?
- EP rotations
  - Significant rotation is observed increasing with harmonic order 'n'.
  - Larger for pA than for AA
  - o Must develop observable to disentangle magnitude fluctuations from EP rotation
- Will be interesting to make these measurements in Cu+Au, d/He+Au systems at RHIC

### Short-range correlations: Estimation

Opp-Charge pairs

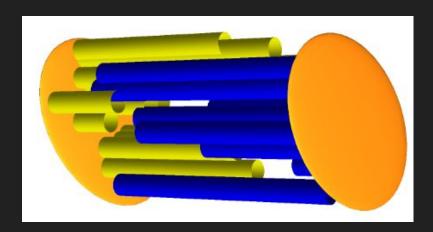
Same-Charge pairs

Ratio



- Short-range correlations depend strongly on relative sign of particle pairs
- Much larger for opposite-sign (left) than like sign pairs (right)
- Ratio has some interesting properties

### Other mechanisms of longitudinal fluctuations



Sources of fluctuating length along η. arXiv:1512.01945 (W. Broniowski, P. Bozek)